Kurze Mitteilung

Vibronisches Spektralverhalten von Molekülen: XX. Theoretische Untersuchung der $S_2 \leftarrow S_0$ -Absorption des Pyrens im Rahmen der Herzberg-Teller-Näherung erster Ordnung

Klaus Gustav* und Michael Storch

Institut für Physikalische Chemie, Friedrich-Schiller-Universität Jena, D-O-6900 Jena, Bundesrepublik Deutschland

Vibronic Spectral Behaviour of Molecules: XX. Theoretical Investigation of the $S_2 \leftarrow S_0$ Absorption of Pyrene Within the Framework of First-Order Herzberg-Teller Approach (Short Commun.)

Summary. On the basis of the completely-optimized S_0 and S_2 molecular geometries of pyrene the vibrational structure of the electronic $S_2 \leftarrow S_0$ transition was calculated within both the Condon approach and the first-order Herzberg-Teller approach. The theoretical results demonstrate the significant influence of vibronic coupling. An analysis of the active vibrational modes is given. The theory – experiment comparison within the Herzberg-Teller approach is satisfactory.

Keywords. Pyrene; Absorption; Vibronic spectral behaviour; Herzberg-Teller approach.

Sowohl die $S_1 \leftarrow S_0$ -Absorption als auch die $S_1 \rightarrow S_0$ -Fluoreszenz des Pyrens sind vor allem wegen der fehlenden Spiegelsymmetrie der beiden Spektren experimentell wie theoretisch intensiv untersucht worden [1-8]. Als Ursache für dieses Phänomen werden vibronische Effekte, die als Herzberg-Teller-Beiträge bekannt sind und durch vibronische Kopplung der energetisch benachbarten S_1 - und S_2 -Elektronenzustände zustandekommen, aber auch die Verletzung der adiabatischen Born-Oppenheimer-Näherung in Gestalt der entsprechenden Korrektur-Terme diskutiert [1, 3, 8]. Tatsächlich gelingt es nicht, die $S_1 \rightarrow S_0$ -Fluoreszenz des Pyrens innerhalb der Condon-Näherung [9] zufriedenstellend zu reproduzieren [10]. Zweifelsfrei sind für die vibronische Kopplung im Pyren die geringe Oszillatorstärke ($f_{1,0} = 0.008$) des ersten Elektronenüberganges und der kleine energetische S_1 - S_2 -Abstand von $\tilde{v}_{exp.} \approx 2700 \text{ cm}^{-1}$ begünstigende Faktoren [1, 11].

Auch beim elektronisch-erlaubten $S_2 \leftarrow S_0$ -Übergang mit $f_{2,0} = 0.6958$ weist deren komplizierte vibronische Struktur in einer Biphenyl-Matrix bei 10 K auf vibronische Wechselwirkungen hin [7]. Für einen begrenzten Spektralbereich dieses Übergangs ist die vibronische Intensitätsverteilung unter Verwendung von experimentell ermittelten Franck-Condon-Faktoren und Einbeziehung der Wechselwirkung zwischen den Schwingsniveaus des S_2 - und des S_1 -Zustandes ebenfalls theoretisch bestimmt worden [12].

Ziel der vorliegenden Mitteilung ist es, die vibronische Strukturierung des $S_2 \leftarrow S_0$ -Übergangs des Pyrens für das gesamte experimentelle Absorptionsspektrum (in 3-Methylpentan bei 100 K) [1] auf der Basis der entsprechenden vollständigoptimierten Molekülgeometrien im Rahmen der Condon- und der Herzberg-Teller-Näherung erster Ordnung [13] zu untersuchen und eine Analyse der aktiven Schwingungsmoden vorzunehmen. Grundlage der Berechnungen ist ein modifiziertes QCFF-PI-Verfahren [14-17], mit dem die vollständig-optimierten Molekülgeometrien, Schwingungsenergien, Normalmodenvektoren, die elektronischen Übergangsenergien und Übergangsmomente sowie die vibronischen Kopplungsterme erhalten wurden. Die anschließende Bestimmung der vibronischen Übergangsmomente erfolgte mit dem Fracon- bzw. dem FCHT-Verfahren wie in [15, 16] beschrieben.

In Tabelle 1 sind die berechneten aktiven Schwingungsmoden \tilde{v}_i für den $S_2 \leftarrow S_0$ -Übergang des Pyrens angegeben. Von den 72 möglichen Normalschwingungen sind intensitätsmäßig lediglich 15 Moden spektroskopisch relevant. Die 7 totalsymmetrischen α_g -Moden \tilde{v}_i (i: 8, 18, 40, 45, 52, 58, 62) tragen mit ihren zumeist beachtenswerten Franck-Condon-Faktoren $<0 | v_i >$ nicht nur zum Franck-Condon-Term wie in der Condon-Näherung, sondern darüber hinaus durch die entsprechenden Abteilungen des elektronischen $S_2 \leftarrow S_0$ -Übergangsmomentes $M_{2, 0; i}^0$ nach den inneren Koordinaten Q_i z.T. auch zum Herzberg-Teller-Term des vibronischen Übergangsmomentes bei. Besonders hervorhebenswert ist vor allem die niederfrequente α_g -Mode $\tilde{v}_8 = 420$ cm⁻¹ wegen ihres Franck-Condon-Faktors, die maßgeblich am zweiten Peak (nach dem 0,0-Übergang; Abb. 1) beteiligt ist.

i	$\tilde{\nu}_i/cm^{-1}$	$\mathbf{v}_{\mathbf{i}}$	γ	A' _{2j; i}		M ⁰ ₂₀ ; i	$ <0 v_{\rm i}> $	$ <0 Q_i v_i> $	Schwingungstyp
				j: S ₁	S ₅				
62	1 664	1	α,			0.10	0.48	0.11	ν _{cc} ; δ _{ccc} ; δ _{ccH}
61	1 620	1	$\tilde{\beta_{1g}}$	0.01	0.29	0.10		0.29	$v_{CC}; \delta_{CCC}; \delta_{CCH}$
58	1 512	1	ασ				0.13		δ _{CCH}
52	1 450	1	α				0.61		$v_{CC}; \delta_{CCH}$
51	1 443	1	β_{1g}	0.04	0.13	0.04		0.11	δ _{CCH}
49	1 388	1	β1.	0.02	0.38			0.52	VCC; OCCH
47	1 302	1	β_{1g}		0.09	0.05		0.20	δ _{CCH}
45	1 2 5 0	1	ασ				0.28		$v_{\rm CC}; \delta_{\rm CCH}$
41	1 1 4 9	1	$\tilde{\beta_{1g}}$	0.02	0.05			0.08	δ _{CCH}
40	1 1 4 6	1	α _g				0.17		δ _{CCH}
25	796	1	βı		0.10			0.23	δ _{CCC}
18	630	1	ασ				0.02		V _{CC}
14	560	1	$\tilde{\beta_{1g}}$		0.02			0.08	δ
11	464	1	β_{1g}		0.05	0.07		0.25	$v_{CC}; \delta_{CCC}$
8	420	1	α _g			0.05	0.52	0.06	$v_{CC}; \delta_{CCC}$

Tabelle 1. Signifikante berechnete Moden, vibronische Kopplungselemente $A'_{2j;i}$, FC- und HT-Faktoren sowie charakteristische Schwingungen für die $S_2 \leftarrow S_0$ -Absorption des Pyrens

Die 8 anderen, nicht-totalsymmetrischen β_{1g} -Moden \tilde{v}_{11} , \tilde{v}_{14} , \tilde{v}_{25} , \tilde{v}_{41} , \tilde{v}_{47} , \tilde{v}_{49} , \tilde{v}_{51} , und \tilde{v}_{61} sind für die vibronische Kopplung A'_{2j;i} hauptsächlich zum S₅-Zustand sowie S₁-Zustand (Tabelle 1) und für das Intensitätsborgen beim S₂ - S₀-Übergang des Pyrens verantwortlich.

In Kombination sind beide Größen für die Herzberg-Teller-Näherung charakteristisch [15, 17]. Im Vergleich zum S₅-Zustand sind die vibronischen Kopplungen A'_{21;i} zum S₁-Zustand sowie die Beiträge M⁰_{20; i}, die für die induzierte Intensität durch die Bewegung der Atomorbitale infolge der Schwingungsbewegung der Atome stehen, bei den β_{1g} -Moden deutlich schwächer. Die stärksten β_{1g} -Moden liegen im oberen Wellenzahlbereich $\tilde{v} \ge 1388 \text{ cm}^{-1}$. Demgegenüber zeigen die Herzberg-Teller-Faktoren $<0|Q_i|v_i>$ keine vergleichbare Separation. Für alle spektroskopisch signifikanten Moden sind die Deformationsschwingungen δ_{CCH} und δ_{CCC} sowie die Streckschwingungen v_{CC} typisch. Erwartungsgemäß spielen Torsionsschwingungen bei der vibronischen Strukturierung der S₂ \leftarrow S₀-Absorption keine Rolle (Tabelle 1).

Wie dem Experiment-Theorie-Vergleich in Abb. 1 zu entnehmen ist, wird die vibronische Strukturierung des $S_2 \leftarrow S_0$ -Übergangs des Pyrens im Unterschied zu den $S_1 \leftrightarrow S_0$ -Übergängen [1] eindeutig vom 0,0-Übergang dominiert. Offensichtlich sind die unterschiedlichen elektronischen Oszillatorstärken wie auch die verschiedenartige Geometrie-Änderung beim Elektronenübergang für das andersartige vibronische Spektralverhalten wesentlich. Tatsächlich verdeutlichen Strukturberechnungen auf der Basis der vollständigen Geometrie-Optimierung, daß beim $S_2 \leftarrow S_0$ -Übergang die peripheren CC-Bindungen des Pyrens die markantesten Änderungen aufweisen, während für den S_1 -S_0-Wechsel die internen CC-Bindungen am stärksten betroffen sind. Die für die $S_2 \leftarrow S_0$ -Absorption relevanten Schwingungsmoden (Tabelle 1) entsprechen zudem den gefundenen Geometrie-Änderungen.

Aus Abb. 1 ist ebenso ersichtlich, daß die Herzberg-Teller-Beiträge weitere Modifizierungen der vibronischen Feinstruktur bewirken, die zu einem realistischen Bandenprofil führen. Der spektroskopische Theorie-Experiment-Vergleich zeigt, daß die Übereinstimmung in der Herzberg-Teller-Näherung akzeptabel ausfällt. Offensichtlich kann beim $S_2 \leftarrow S_0$ -Übergang des Pyrens im Unterschied zur $S_1 \leftarrow S_0$ -Absorption und $S_1 \rightarrow S_0$ -Fluoreszenz die adiabatische Näherung noch als gerechtfertigt angesehen werden, so daß Born-Oppenheimer-Korrekturterme entbehrlich sind. Im Fall der vibronischen Strukturierung der $S_2 \leftarrow S_0$ -Absorption ist interessant,

Abb. 1. Experimentelle $S_2 \leftarrow S_0$ -Absorption [1] und theoretisches vibronisches $S_2 \leftarrow S_0$ -Strichspektrum des Pyrens in der Condon- und Herzberg-Teller-Näherung (C: —; HT: ---)

daß ungeachtet der großen elektronischen Oszillatorstärke dieses Übergangs die Herzberg-Teller-Beiträge im Vergleich zu den Condon-Termen für das vibronische Übergangsmoment signifikant sind. Keinesfalls reicht nur die Condon-Näherung für die vernünftige Reproduktion des experimentellen Absorptionsübergangs aus. Es sei allerdings angemerkt, daß dieser Befund bei den linearen Acenen wie Naphthacen und Pentacen, die eine vergleichbare Oszillatorstärke und auch einen dominierenden 0,0-Übergang besitzen, nicht mehr zutreffend ist [18].

Literatur

- [1] Geldof P. A., Rettschnick R. P. H., Hoytink G. J. (1971) Chem. Phys. Lett. 10: 549
- [2] Marconi G., Salvi P. R., Quacquarini R. (1984) Chem. Phys. Lett. 107: 314
- [3] Cunningham K., Siebrand W., Williams D. F., Orlandi G. (1973) Chem. Phys. Lett. 20: 496
- [4] Bree A., Vilkos V. V. B. (1971) Spectr. Chim. Acta 27 A: 2333
- [5] Tuan V. D., Wild U. P., Lamotte M., Merle A. M. (1976) Chem. Phys. Lett. 39: 118
- [6] Langkilde F. W., Thulstrup E. W., Michl J. (1983) J. Chem. Phys. 78: 3372
- [7] Bree A., Leyderman A., Salvi P. R., Taliani C. (1986) Chem. Phys. 110: 211
- [8] Marconi G., Salvi P. R. (1986) Chem. Phys. Lett. 123: 254
- [9] Condon E. U. (1928) Phys. Rev. 32: 858; Roche M., Jaffe H. H. (1976) Chem. Soc. Rev. 5: 165
- [10] Gustav K., Seydenschwanz C. (1990) Physik. Chem. (Leipzig) 271: 731
- [11] DMS-UV-Atlas (1968) Verlag Chemie, Weinheim
- [12] Ohta N., Baba H., Marconi G. (1987) Chem. Phys. Lett. 113: 222
- [13] Herzberg G., Teller E. (1933) Z. Physik. Chem. B21: 410
- [14] Warshel A., Karplus M. (1972) J. Am. Chem. Soc. 94: 5612
- [15] Gustav K., Storch M., Jung Ch. (1989) Acta Phys. Polon A76: 883
- [16] Storch M. (1988) Programmdokumentation Photophysikalische Chemie. Fr.-Schiller-Universität Jena, Sektion Chemie
- [17] Warshel A., Dauber P. (1977) J. Chem. Phys. 66: 5477
- [18] Gustav K., Storch M. (1991) Publikation in Vorbereitung

Eingegangen 7. August 1991. Angenommen 16. Oktober 1991

62